Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arctic amplification has altered the climate patterns both regionally and globally, resulting in more frequent and more intense extreme weather events in the past few decades. The essential part of Arctic amplification is the unprecedented sea ice loss as demonstrated by satellite observations. Accurately forecasting Arctic sea ice from sub-seasonal to seasonal scales has been a major research question with fundamental challenges at play. In addition to physics-based Earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven approaches to study sea ice variations, we propose MT-IceNet – a UNet-based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC). The model uses an encoder-decoder architecture with skip connections and processes multi-temporal input streams to regenerate spatial maps at future timesteps. Using bi-monthly and monthly satellite retrieved sea ice data from NSIDC as well as atmospheric and oceanic variables from ERA5 reanalysis product during 1979-2021, we show that our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.more » « less
-
The Arctic is a region with unique climate features, motivating new AI methodologies to study it. Unfortunately, Arc- tic sea ice has seen a continuous decline since 1979. This not only poses a significant threat to Arctic wildlife and surrounding coastal communities but is also adversely affecting the global climate patterns. To study the potential of AI in tackling climate change, we analyze the performance of four probabilistic machine learning methods in forecasting sea-ice extent for lead times of up to 6 months, further comparing them with traditional machine learning methods. Our comparative analysis shows that Gaussian Process Regression is a good fit to predict sea-ice extent for longer lead times with lowest RMSE score.more » « less
-
Accurately forecasting Arctic sea ice from sub- seasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecast- ing. Looking at the potential of data-driven sea ice forecasting, we propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead. Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our multi-temporal ensemble method outperforms several baseline and recently proposed deep learning models. This will substantially improve our ability in predicting future Arctic sea ice changes, which is fundamental for forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife.more » « less
-
Abstract This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.more » « less
-
Important natural resources in the Arctic rely heavily on sea ice, making it important to forecast Arctic sea ice changes. Arctic sea ice forecasting often involves two connected tasks: sea ice concentration at each pixel and overall sea ice extent. Instead of having two separate models for two forecasting tasks, in this report, we study how to use multi-task learning techniques and leverage the connections between ice concentration and ice extent to improve accuracy for both prediction tasks. Because of the spatiotemporal nature of the data, we designed two novel multi-task learning models based on CNNs and ConvLSTMs, respectively. We also developed a custom loss function which trains the models to ignore land pixels when making predictions. Our experiments show our models can have better accuracies than separate models that predict sea ice extent and concentration separately, and that our accuracies are better than or comparable with results in the state-of-the-art studies.more » « less
An official website of the United States government

Full Text Available